105 research outputs found

    Delay-Energy lower bound on Two-Way Relay Wireless Network Coding

    Full text link
    Network coding is a novel solution that significantly improve the throughput and energy consumed of wireless networks by mixing traffic flows through algebraic operations. In conventional network coding scheme, a packet has to wait for packets from other sources to be coded before transmitting. The wait-and-code scheme will naturally result in packet loss rate in a finite buffer. We will propose Enhanced Network Coding (ENC), an extension to ONC in continuous time domain. In ENC, the relay transmits both coded and uncoded packets to reduce delay. In exchange, more energy is consumed in transmitting uncoded packets. ENC is a practical algorithm to achieve minimal average delay and zero packet-loss rate under given energy constraint. The system model for ENC on a general renewal process queuing is presented. In particular, we will show that there exists a fundamental trade-off between average delay and energy. We will also present the analytic result of lower bound for this trade-off curve, which can be achieved by ENC

    Up-Regulation of Kin17 Is Essential for Proliferation of Breast Cancer

    Get PDF
    Background: Kin17 is ubiquitously expressed at low levels in human tissue and participates in DNA replication, DNA repair and cell cycle control. Breast cancer cells are characterized by enabling replicative immortality and accumulated DNA damage. However, whether kin17 contributes to breast carcinogenesis remains unknown. Methodology/Principal Findings: In this study, we show for the first time that kin17 is an important molecule related to breast cancer. Our results show that kin17 expression was markedly increased in clinical breast tumors and was associated with tumor grade, Ki-67 expression, p53 mutation status and progesterone receptor expression, which were assessed in a clinicopathologic characteristics review. Knockdown of kin17 inhibited DNA replication and repair, blocked cell cycle progression and inhibited anchorage-independent growth, while increasing sensitivity to chemotherapy in breast cancer cells. Moreover, kin17 silencing decreased EGF-stimulated cell growth. Furthermore, overexpression of kin17 promoted DNA replication and cell proliferation in MCF-10A. Conclusions/Significance: Our findings indicate that up-regulation of kin17 is strongly associated with cellular proliferation, DNA replication, DNA damage response and breast cancer development. The increased level of kin17 was not only a consequence of immortalization but also associated with tumorigenesis. Therefore, kin17 could be a novel therapeuti

    Ginsenoside Rg3 treats acute radiation proctitis through the TLR4/MyD88/NF-κB pathway and regulation of intestinal flora

    Get PDF
    ObjectivesThis study aimed to investigate the protective effect of ginsenoside Rg3 (GRg3) against acute radiation proctitis (ARP) in rats.MethodsWistar rats were randomly divided into control, model, dexamethasone-positive, GRg3 low-dose, GRg3 medium-dose, and GRg3 high-dose groups. The ARP rat model was established by a single 22-Gy irradiation of 6 MV) X-rays. The distribution and function of intestinal flora were detected using 16S rRNA high-throughput sequencing, rectal tissue was observed by hematoxylin and eosin (H&E) staining, the expression of interleukin 1β (IL-1β) and IL-10 inflammatory factors was detected by ELISA, and mRNA and protein expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were detected by RT-qPCR and Western blotting, respectively.ResultsGRg3 improved the symptoms of ARP in rats in a dose-dependent manner. The species distribution of intestinal flora in GRg3 rats was significantly different from that in ARP rats. These differences were more significant in the high-dose group, where the numbers of Ruminococcus, Lactobacillus, and other beneficial bacteria were significantly increased, whereas those of Escherichia, Alloprevotella, and other harmful bacteria were decreased. In addition, GRg3 was closely related to amino acid metabolism. After GRg3 treatment, the mRNA and protein expression of TLR4, MyD88, and NF-κB in rectal tissue was significantly down-regulated, and the level of downstream inflammatory factor IL-1β decreased, whereas that of IL-10 increased.ConclusionOur study indicated GRg3 as a new compound for the treatment of ARP by inhibiting the TLR4/MyD88/NF-κB pathway, down-regulating the expression of proinflammatory factors, thus effectively regulating intestinal flora and reducing inflammatory reactions

    MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

    Get PDF
    Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA–driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions

    Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2_2Te4_4

    Full text link
    The recent discovered antiferromagnetic topological insulators in Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle-resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2_2Te4_4 exists between the bulk band gap. Such unexpected surface state remains unchanged across the bulk N\'eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab\textit{ab}-initio\textit{initio} calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results reveal that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases such as topological crystalline insulator and time-reversal-preserved topological insulator, by tuning the magnetic configurations.Comment: 9 pages, 4 figures. To appear in Phys. Rev. X. See Version 1 for the supplementary fil
    • …
    corecore